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Mg/Gr Mirrors: Phase I 
Technical Objectives
Mg/Gr Mirrors: Phase I 
Technical Objectives

•Produce a dimensionally stable metal matrix 
composite with a CTE less than 2 ppm/K

•Achieve an areal density of ~5 kg/m2

•Produce a thermally stable composite with a thermal 
conductivity of >150 W/mK

•Demonstrate optical surface finish at ~λ/200 to λ/500

•Investigate preform technologies for achieving 
isotropic properties

•Demonstrate low cost manufacturing
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Desirable Mirror Substrate 
Properties

Desirable Mirror Substrate 
Properties

High stiffness
Low density
High thermal conductivity 
Low thermal expansion
Low Cost

Low basic materials cost
Low processing cost
Short lead time for delivery of  pre-
figured blanks
Short polishing times

• Leads to high specific 
stiffness- E/ρ

• Leads to high thermal 
stability- k/α

}

}
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Constituent MaterialsConstituent Materials

Matrix Alloys Composition E (gPa) CTE (ppm/K) TC (W/mK)

Mg- AZ-91D Mg- 9 Al- .13 Mn- 1 Zn 45 (6.5 msi) 26 72
Mg- AZ-31 Mg- 3 Al- 0.2 Mn- 1 Zn 45       “ 26                 96
Mg- ZC-61 Mg- 6 Zn- 3 Cu- 0.5 Mn 45       “ 26 122
Al 413-HP Al-12.5 Si- 0.3Mg 71       “ 21 167

Graphite Fiber ReinforcementGraphite Fiber Reinforcement

EE1 1 gPa (msi)  EgPa (msi)  E2 2 gPa (msi)      CTE ppm/KgPa (msi)      CTE ppm/K
*CKD*CKD--x:x: 862 (125)            6.9     (1)862 (125)            6.9     (1) --1.5 1.5 

*CKA*CKA--x:  965 (140)          6.9    (1 )              x:  965 (140)          6.9    (1 )              --1.5  1.5  

*Cytec graphite fibers:Cytec graphite fibers: 1” chopped, processed into a random, in plane 1” chopped, processed into a random, in plane 
matmat
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MMCC’s Approach to Mirror 
Substrate Materials Design and 

Processing

MMCC’s Approach to Mirror 
Substrate Materials Design and 

Processing
• Select Mg reinforced with high modulus graphite fibers

• Design preform

• Planar isotropic with discontinuous fibers  (Ph. I)

• Quasi-isotropic preform  with continuous fibers (Ph. II)

• Hybrid of discontinuous P-I and continuous Q-I preform 
( Ph. II)

•Organize architecture so that planar-isotropic preforms 
coincide with reflective plane of mirror



Technology Days:  Mirror Development 
9/16-9/18,' 03 8

MMCC’s Approach to Mirror 
Substrate Materials Design and 

Processing- (continued)

MMCC’s Approach to Mirror 
Substrate Materials Design and 

Processing- (continued)

• Compress preform to volume fraction required for 
target coefficient of thermal expansion (CTE).  Preform 
to be pressed to near final figure.

• Preform loaded into a near final figure machined 
(carbon) mold and vacuum/pressure infiltrated with 
molten Mg or Al alloy

• Infiltrated blank lightweight machined on back face, 
figure machined and Si coated prior to polishing to final 
figure and finish
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Modified Schapery’s Equation 
for Composite CTE Prediction
Modified Schapery’s Equation 
for Composite CTE Prediction

Where:
αcx = coefficient of thermal 

expansion of composite
E = Young’s modulus of elasticity
v = volume fraction reinforcement
Subscripts:
m = matrix                    
f = fiber                         
fa =  fiber axial 
ft = fiber transverse
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Concepts for Continuous/Discontinuous 
Hybridization of Planar Isotropic Preforms
Concepts for Continuous/Discontinuous 
Hybridization of Planar Isotropic Preforms

S

Section of base structure.  Surface 
skin is co-infiltrated graphite veil or 
Saffil™ paper to prevent fiber 
print-through and to provide a 
surface for machining/polishing.

•Hybridized skin
•Quasi-isotropic symmetrical 
angle-ply laminates forming 
substrate
•Back skin to provide balance 
and actuator attachment 
surface
•Ni or Si plated/deposited 
surface

Surface mat skin

0 deg
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+45 deg

-45 deg

-45 deg
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Surface mat skin

60 deg

0 deg

-60 deg

Center mat 
layersS

(0o +60o-60o/-60o+60o0o) x n 
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Discontinuous or Continuous Angle 
Ply Graphite, (or Hybridized) Fiber 

Preform Manufacture

Discontinuous or Continuous Angle 
Ply Graphite, (or Hybridized) Fiber 

Preform Manufacture
Convex and concave 
die faces machined to 
mirror figure 
dimensions

Preforms composed of 

• Paper mats of random-in-plane 
lamina or

• Quasi-isotropic angle ply laminates 
hybridized with paper mats

Pressed and stabilized 
preform with original 
laminates parallel to 
mirror figure surfacePress to desired 

v/o fiber, heat to 
melt, then chill 
to set fugitive 
binder
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Manufacturing Mg/Gr Mirror 
Substrates at MMCC
Manufacturing Mg/Gr Mirror Manufacturing Mg/Gr Mirror 
Substrates at MMCCSubstrates at MMCC

Preforms with original preform 
laminates parallel to mirror surface

Graphite molds with figure 
machined cavity surfaces

Graphite mold constraints

Vacuum tight steel vessel

Insulated molten alloy reservoir
~2.5 Cubic Feet of preform material being 
transferred to autoclave for pressurization and 
liquid metal infiltration
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In-Plane Microstructure of 
Gr/Mg Mirror Materials
In-Plane Microstructure of 
Gr/Mg Mirror Materials
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Planar-Isotropic Mg/Graphite: 
Summary of CTE Data as a Function 
of v/o of various Gr Fiber preforms

Planar-Isotropic Mg/Graphite: 
Summary of CTE Data as a Function 
of v/o of various Gr Fiber preforms
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Expected Temperature Range of ABL

• –20C to –65C in flight 

• –15C to 46 C on the ground

MMCC development stability goals:

50C to –70C
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Thermal Stability Approach
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(c)
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Thermal Cycle of  Mg AZ31 
Reinforced with Planar Isotropic 
CKD-x Graphite Fiber

Thermal Cycle of  Mg AZ31 
Reinforced with Planar Isotropic 
CKD-x Graphite Fiber

Heating:
•Filament shrinks 1.5 ppm/K, matrix expands by 26 ppm/K

•Dislocations are punched into matrix to accommodate ∆CTE

•Dislocations are rearranged (or annihilated) as temperature 
approaches and exceeds 0.5 Tm (half melting point, 450K, 180C) 

Cooling:
•Filament expands 1.5 ppm/K, 
Matrix shrinks 26 ppm/K

•Dislocations are punched to 
accommodate ∆CTE

•Dislocations are created faster than 
they are annihilated as temperature 
decreases below 0.5 Tm, leading to a 
work hardened matrix

•Further thermal cycling is expected 
to rearrange dislocations into a stable 
substructure
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Example of Saturation upon Repeated 
Thermal Cycling, no Pre- Thermal Seasoning

Thermal Expansion Behavior of Planar-Isotropic  AZ31/CKAx 
49 v/o Specimen After Two Heating and Cooling Cycles to 

100C  (Casting 0820031 plate 2 #3)
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Example of Complete Saturation 
and Stabilization after Pre-

seasoning 
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Initial Cryogenic Thermal Cycle test

Thermal cycle from 146C to –
160C of 0/90/+-45 Continuous 
Quasi-isotropic Mg/Gr 
composite.  α = 1.9 ppm/K
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Temporary Manufacturing Specification 
for Gr/Mg ABL Mirrors

1. Preform to be CKA-x Paper Mat
2. Use proper ply rotation during preforming
3. Press to yield 50 v/o in the final casting
4. Pressure infiltrate with AZ 31 Mg alloy and directionally solidify
5. Machine to rough final shape in as-cast condition
6. Heat treat to 200C (TBD) for x min (TBD)
7. Slow cool to ambient
8. Thermal cycle from RT to 125C to -60C to RT to 125C to RT, n cycles to 

be determined.
9. Final machine to net shape 
10. Post machining processing:  (Electroplating, PACVD Si coating, replica 

attachment, etc.)
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CTE of Mirror Materials (Si,  SiC, ULE, Zerodur, 
Mg MetGraf) As a Function of Temperature

CTE of Mirror Materials (Si,  SiC, ULE, Zerodur, 
Mg MetGraf) As a Function of Temperature
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Properties of Candidate Space 
Mirror Materials

Properties of Candidate Space Properties of Candidate Space 
Mirror MaterialsMirror Materials

Thermal
Specific CTE Thermal Stability

Material \ Property Modulus density Stiffness Cond. K/CTE-
E-gPa g/cc gPa-cc/g ppm/K W/mK W/mm Reference

Mg 44.8 1.77 25.3 26 122 4.7 ASM Metals Hbk
Be 289.6 1.85 156.5 11.6 190 16.4 "
Al 69.0 2.70 25.5 22.7 170 7.5 "
ULE 98.0 2.21 44.3 0.03 1.31 43.7 Xinetics- NMSFC w orkshop 5/01
Zerodur 92.0 2.50 36.8 0.01 1.6 160.0 Poco- NMSFC w orkshop 5/01
Fused Silica 72.0 2.10 34.3 0.5 1.5 3.0 Poco- NMSFC w orkshop 5/01
Silicon 110.0 2.33 47.2 2.4 125 52.1 ASM Metals Hbk
Gr/Mg P-I Phase I 172.0 1.98 86.9 1.67 180 107.8 MMCC Ph. I
Gr/Al Phase I 180.0 2.38 75.6 1.5 220 146.7 MMCC Ph. I
Ceraform SiC 310.0 2.95 105.1 2.44 156 63.9 Xinetics- NMSFC w orkshop 5/01 
Poco SiC 248.0 2.55 97.3 1.9 170 89.5 Poco- NMSFC w orkshop 5/01
CVD SiC 448.0 3.21 139.6 2.6 240 92.3
SSG HP SiC 112.0 65.0 SSG- NMSFC w orkshop 5/01
SSG RB SiC 115.0 75.0 "
Mg/Gr Quasi Isotropic 203.0 2.00 101.6 0.45 200 444.4 JC  Lam.  The o ry  + R OM  f o r K

Gr/Al Quasi isotropic 210.0 2.37 88.6 1.14 220 193.0 "
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Demonstration of Lightweighting in
Planar Isotropic Al/Gr Composites
Demonstration of Lightweighting in 
Planar Isotropic Al/Gr Composites

Total machining time=3 hr 

Plate 1:  Face thickness=2 mm.   Outer ribs 
= 1.75 mm, Inner ribs = 2 mm , Mass in Al 
/Gr = 375 g, Areal density in Al/Gr = 6.12 
kg/m2 Equivalent Areal density in Mg/Gr = 
5.04 kg/m2

Plate A

Plate B

Plate A:  A.D. = 
5.04 kg/m2

Plate B:  Areal 
density = 4.06 kg/m2

Plate 2: Face thickness =1.625 mm, Outer ribs 
=1.5 mm, Inner ribs = 1.375 mm, sub-ribs 1 mm 
wide x 1 mm deep.  Mass in Al/Gr = 307 g, Areal 
density in Al/Gr = 5.04 kg/m2, equivalent areal 
density in Mg/Gr = 4.06 kg/m2



Technology Days:  Mirror Development 
9/16-9/18,' 03 26

Si Coated and Polished 
Gr/Mg and Gr/Al

Si Coated and Polished 
Gr/Mg and Gr/Al
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MMCC’s Manufacturing Scale 
Pressure Infiltration Casting Facility
MMCC’s Manufacturing Scale MMCC’s Manufacturing Scale 
Pressure Infiltration Casting FacilityPressure Infiltration Casting Facility

3 1/2 Cubic Feet of preform material being 
transferred to autoclave for pressurization

30” diameter autoclave which will permit ~ 4-7 
60 cm diameter mirror segments per casting.  
An 1.8 m mirror can be assembled from 7 hex 
segments + six filler segments.

600 mm

600 mm

600 mm

1.8 m
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Summary of MMCC Mirror 
Manufacturing Process

Summary of MMCC Mirror 
Manufacturing Process

1. Stack planar-isotropic (random in-plane) mats or quasi-
isotropic lamina in hydraulic press mold shaped to near 
final figure

2. Compress to desired volume fraction and set binder
3. Insert preform into pre-figured mold cavity
4. Heat under vacuum to evaporate binder
5. Pressure infiltrate with molten Mg (or Al) and solidify
6. Lightweight machine back plane, machine mirror plane to 

near-final figure to a roughness less than 10 µ 
7. Plasma CVD coat with~ 125 µ Si
8. Polish to final figure and finish
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Conclusions from AF Phase I 
Mg/Gr Mirror Study
Conclusions from AF Phase I 
Mg/Gr Mirror Study

• Calibration curves for CTE developed.  Projected goal of 2 ppm/K and >150 
W/mK thermal conductivity met and exceeded with ~55 v/o CKA-x isotropic 
preform.  Actual CTE measured was 1.96 ppm/K and thermal conductivity 
was 160 W/MK.  (Recalibrated to 50 v/o for modified Phase II preform)

• An areal density of 5.01 kg/m2 was demonstrated in Al/Gr.  This converts to 
4.02 kg/m2 for Mg/Gr composites. Further mass reduction is possible.

• Planar isotropic CKA-x preforms resulted in reliable CTE properties. 

•CTE behavior of Al-12.5 Si-.3 Mg matrix reinforced with planar isotropic 
CKD-x fiber matches laminate theory and results in extremely well behaved 
materials with high thermal conductivity.

• With current facilities, 610 mm segments can be manufactured.  These can 
be assembled into 1.5 to 1.8 m or greater mirrors.   
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Conclusions from AF Phase I 
Gr/Mg Mirror Study- (continued)
Conclusions from AF Phase I 
Gr/Mg Mirror Study- (continued)

• A larger autoclave (48” dia) will enable manufacture of  
1000 mm hex segments (autoclave cost est. @ $160k)

• Hybridized planar-isotropic mats/quasi-isotropic angle ply 
continuous fiber laminate  Gr/Mg can be tailored to CTE of 
0 ppm/K
CTE does not change with temperature from  ambient to 
140C.  Indications are that CTE will be constant to ~ -60C
Thermal seasoning to –75C produces thermal stability over 
ABL thermal exposure range (46C to –65C)
Material is extremely easy to machine.  Since Si plating is 
needed for mirror surface, figure and finish during 
preparation of substrate is not critical
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Future R&D RequiredFuture R&D Required
• Optimization of Mg/Gr preforms by perfecting starting mat material and 
through hybridization with continuous angle-ply laminates

• Optimize matrix alloy for high thermal conductivity

• Develop/demonstrate limits of thermal stability for various applications:

• Airborne (Preliminarily demonstrated)

• Near and deep space

• Ambient (Demonstrated)

• Develop matching CTE for metering structures and optical benches for

• Gr/Mg

• RBSiC

•ULE, Zerodur, Be, Invar, etc
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Phase II Technical ObjectivesPhase II Technical Objectives

Overall Phase II technical objectives are:
1. Optimize graphite fiber reinforced Mg alloy systems for mirrors and mirror 

substructures (optical benches, metering structures)
2. Demonstrate that the MMCC technology can be used to fabricate 500 mm 

hexagonal mirror segments
3. Demonstrate that the hex mirror segments can be joined to form a 1500 mm 

mirror.
4. Demonstrate that the mirror structure in the finished form will weigh less 

than 19.3 kg/m2.  (4 kg/m2 was demonstrated in Phase I on an arbitrary 
design)

5. Demonstrate that the mirror substructure can be Si coated and polished to 
an aspheric figure with the following specifications:

PV better than 1.0 waves
RMS better than 0.25 waves
Roughness better than 10 nm rms
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Phase II Technical Objectives
(continued)

Phase II Technical Objectives
(continued)

More specific technical objectives include the following:
6. Optimize a Gr/Mg alloy system for maximum thermal cycling stability 

over ABL temperature range
7. Optimize the composite system for a CTE of ~2 ppm/K with high 

conductivity and high specific stiffness
8. Demonstrate potential for lower, e.g. 1 to 0 ppm/K CTE
9. Demonstrate dimensional stability during thermal cycling
10. Develop, in parallel, the materials science necessary to understand and 

predict the materials behavior  
11. Explore potential for organic replicas applied to Mg/Gr flats

Non technical objectives are:
1. Demonstrate that after the prototype and scale up development is

completed, that the procurement time for a mirror is less than 18 months
2. Demonstrate that the mirror is cost effective compared to Be and ULE
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New Phase I MDA Mirror 
Projects

New Phase I MDA Mirror New Phase I MDA Mirror 
ProjectsProjects

MDA-03-025 (B031-0921) 
“Light Weight Thermally Balanced Graphite 
Reinforced Mg Structural Substrates for Replicated 
Mirror Membranes”
MDA-03-048 (B031-0925)
“Graphite Fiber Reinforced Magnesium as a 
Beryllium Replacement Material for EKV Seeker 
Mirrors and Substructures”
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MDA-03-025  Objectives:
Replicated Mirror Membranes on 

Mg/Gr Substrates

MDAMDA--0303--025  Objectives:025  Objectives:
Replicated Mirror Membranes on Replicated Mirror Membranes on 

Mg/Gr SubstratesMg/Gr Substrates
1. Determine feasibility for developing  inexpensive and light weight 

mirrors with short delivery times using MMCC’s Mg/Gr 
technology and best practice replica technology by CRG and 
LLNL

2. Demonstrate that MMCC’s Mg/Gr technology can be scaled to 
large segmented mirrors up to 10 m diameter

3. Demonstrate that neat cyanate ester (NCE) replicas can be 
transferred to a Mg/Gr substrate and maintain float-glass 
optically flat figure and micro-finish of the master optical 
mandrel

4. Demonstrate that the LLNL Cu-Zr (or Ni-Ti) nanolaminates can 
be transferred to a Mg/Gr substrate and maintain the optically 
flat figure and micro-finish of the master optical mandrel

5. Demonstrate a optical surface sheet stiffness of ~200 gPa and 
CTE matching to the nanolaminate
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MDA-03-025 Objectives: Replicated 
Mirror Membranes on Mg/Gr 

Substrates- (continued)

MDAMDA--0303--025025 Objectives:Objectives: Replicated Replicated 
Mirror Membranes on Mg/Gr Mirror Membranes on Mg/Gr 

SubstratesSubstrates-- (continued)(continued)

6. Demonstrate that a mirror structural substrate can be manufactured 
without knit patterns and print-through in the final replicated surface

7. Demonstrate rigid mirror structural substrate areal density less than 
10 kg/m2

8. Demonstrate that a symmetrical and structurally stable structural 
substrates can be reliably manufactured and demonstrated with 
replicas of flat float-glass master mandrel attached
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MDA-03-025
Specific questions to be answered 

from the Phase I research are:

MDA-03-025
Specific questions to be answered 

from the Phase I research are:
1. Can the proposed surface architecture with discontinuous fibers arranged randomly in-

plane prevent knitting and print-through of angle ply asperities in fiber distribution?

2. Can the surface figure be maintained after thermal cycling over the application 
temperature range?

3. Can the NCE replica be extracted from the master optical mandrel without stretch marks 
and distortions?

4. Can CTE be optimized to the replicated membrane and still maintain attractive stiffness?

5. Can the replica be applied to the structural substrate without unbalancing the structure? 

6. Can the structural substrates be manufactured economically and with rapid delivery? 

7. Which replica technology (CRG polymeric or LLNL nanolaminate Ti-Ni (or others such as 
TREX SiC membranes)) offers most promise when combined with MMCC’s Mg/Gr 
structural substrates?
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Alternative Approach to 
Lightweight Mirrors:  
Alternative Approach to 
Lightweight Mirrors:  

•Lightweighted Gr/Mg or Gr/Al 
substrate-CTE matched to 
replicated mirror

• Replicated mirror membrane on 
mandrel to be braze or adhesive 
bonded to Mg-Gr mirror base 
substrate

Rigid lightweighted mirror base with 
replicated surface film, adhesive bonded
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Neat Cyanate Ester ReplicaNeat Cyanate Ester Replica

CRC’s cyanate ester-glass 
syntactic composite 
mirror
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Nanolaminate Replica 
Membranes
Nanolaminate Replica 
Membranes

A 25 cm diameter, 110 mm thick thin 
shell mirror consisting of alternating 
600 Å thick copper layers and 80 Å
thick copper/zirconium amorphous 
intermetallic layers is shown . A surface 
finish of 10 Å achieved off a super-
polished tool.
(Compliments of Dr. Troy Barbee)
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CTE Compatibility of Candidate Mirror 
Materials with Mg/Gr
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MDA-03-025

Work Plan

2.1 Materials evaluation and preliminary optimization for 
replica substrate
2.1.1 Quasi-isotropic architecture (0, +/-60)
2.1.2 Hybridized (next generation mat + quasi-isotropic)
2.1.3 Legacy architecture using planar-isotropic mats @ 55 v/o

2.2 Materials evaluation
CTE, E, TS, TC, 
Thermal seasoning

Dimensional stability
Flatness

2.3 Materials selection and fabrication for replication studies
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MDA-03-025

Work Plan (continued)
MDA-03-025

Work Plan (continued)

2.4 Manufacture materials for CRG application of Neat 
Cyanate Ester (NCE) replicas and LLNL microlaminates 

~24- 32mm x 32 mm x 10 mm thick blanks polished to ~10µ roughness
~18- 75 mm diameter x 10 mm polished to ~10µ roughness

12 hex flats- 150 mm x 10 mm thick lightweight machined to 10-15 
kg/m2 , polished to ~10 µ 
All blanks to be thermal seasoned prior to replica application

3.0 Replica application
3.1 NCE applied to MMCC substrates at CRG
3.2 Microlaminates applied at MMCC with consultation 

from LLNL
3.3 Evaluation:

CRG to perform test matrix using NCE and evaluate finish, PV
MMCC to evaluate thermal cycling from – 100 to + 100C.                  
Dr. Mollenhauer AFRL/MLLM to evaluate PV and finish
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MDA-03-025

Work Plan (continued)
MDAMDA--0303--025025

Work Plan Work Plan (continued)(continued)

4.0 Demonstrate feasibility using ABA as a focus and reference 
model for the study

Cost analysis
Buy to fly time line analysis
Figure and finish fidelity of replicated optics
Print through analysis after thermal cycling
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Horizontal section through 
mirror showing lightweighting 
pattern for rib stiffened core

Section through mirror showing 
faceplate, matching base plate and 
lightweighted core.

•Polished PVD Si 
surface on angle 
ply face plate

•Planar-isotropic 
core lightweighted 
by machining and 
thermal seasoning

•Angle ply base 
plate solder or 
adhesive bonded 
after lightweight 
machining

Solder or adhesive 
bond

MDA-03-048
“Be Buster”(B031-0925)

MDAMDA--0303--048048
“Be Buster”(B031“Be Buster”(B031--0925)0925)
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MDA-03-048
Overall Objectives (B031-0925)

MDAMDA--0303--048048
Overall Objectives (B031Overall Objectives (B031--0925)0925)

1. Demonstrate that stable Gr-Mg structures can be manufactured

2. Demonstrate thermal stability 

3. Demonstrate technology by manufacturing a mirror structure with 
mass and performance equivalent to Be for EKV primary steering 
mirror

4. Demonstrate manufacturing cost savings of Mg-Gr composite 
mirrors compared to Beryllium

5. Additional post-award objective by PI:  Can thin film, e.g. SiC 
improve performance of Gr/Mg substrate mirror?
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MDA-03-048
Overall Objectives (B031-0925)  

(continued)

MDAMDA--0303--048048
Overall Objectives (B031Overall Objectives (B031--0925)  0925)  

(continued)(continued)

The principle technical question to be answered is: 

Can thermal seasoning eliminate hysteresis during 
thermal cycling and result in thermal stability?  
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Gr Fiber Reinforced Mg as a Be Replacement 
Material for EKV Seeker Mirrors Phase I 

(F29601-03-M-0280)

Additional suggestions by Prime KEV contractor:

• In MMCC design, CTE of Mg/Gr should match CTE of Si at 
300K (RT) (~2.6 ppm/K).  This corresponds to decreasing the 
planar isotropic volume fraction CKAx fiber from 50 (for ABL 
applications) to 42-45 v/o.

• Thermal stability to be based on #A10FC-1 (Coastal Alaska) 
maximum diurnal temperature variation of –35 to 44C (less 
severe than ABL).

• Fundamental vibration frequency to be 2500 Hz.

• Demonstrate technology with f-1 (based on 8” aperture) with a 
RC of 16”.
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